首页> 外文OA文献 >Using combined computational techniques to predict the glass transition temperatures of aromatic polybenzoxazines.
【2h】

Using combined computational techniques to predict the glass transition temperatures of aromatic polybenzoxazines.

机译:使用组合的计算技术预测芳族聚苯并恶嗪的玻璃化转变温度。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Molecular Operating Environment software (MOE) is used to construct a series of benzoxazine monomers for which a variety of parameters relating to the structures (e.g. water accessible surface area, negative van der Waals surface area, hydrophobic volume and the sum of atomic polarizabilities, etc.) are obtained and quantitative structure property relationships (QSPR) models are formulated. Three QSPR models (formulated using up to 5 descriptors) are first used to make predictions for the initiator data set (n = 9) and compared to published thermal data; in all of the QSPR models there is a high level of agreement between the actual data and the predicted data (within 0.63-1.86 K of the entire dataset). The water accessible surface area is found to be the most important descriptor in the prediction of T(g). Molecular modelling simulations of the benzoxazine polymer (minus initiator) carried out at the same time using the Materials Studio software suite provide an independent prediction of T(g). Predicted T(g) values from molecular modelling fall in the middle of the range of the experimentally determined T(g) values, indicating that the structure of the network is influenced by the nature of the initiator used. Hence both techniques can provide predictions of glass transition temperatures and provide complementary data for polymer design.
机译:分子操作环境软件(MOE)用于构建一系列苯并恶嗪单体,其结构的各种参数(例如水可及表面积,负范德华表面积,疏水体积和原子极化率之和,等),并建立定量结构性质关系(QSPR)模型。首先使用三个QSPR模型(最多使用5个描述符构成)对启动器数据集(n = 9)进行预测,然后与已发布的热力数据进行比较。在所有QSPR模型中,实际数据和预测数据之间(在整个数据集的0.63-1.86 K之内)有很高的一致性。发现水可利用表面积是预测T(g)时最重要的指标。使用Materials Studio软件套件同时进行的苯并恶嗪聚合物(减引发剂)的分子建模模拟提供了T(g)的独立预测。通过分子建模预测的T(g)值落在实验确定的T(g)值范围的中间,这表明网络结构受所用引发剂性质的影响。因此,两种技术都可以提供玻璃化转变温度的预测,并为聚合物设计提供补充数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号